Abstract
Peripheral doses (PD) from uniform dynamic multileaf collimation (DMLC) fields were measured for 6 MV x-rays on a Varian linear accelerator using a 0.6 cc ionization chamber inserted at 5 cm depth into a 35 × 35 × 105 cm3 plastic water phantom. PD measurements were also carried out under identical conditions for seven patients treated for head and neck and cervical cancer employing sliding window intensity-modulated radiotherapy (IMRT). The measured PD from these patient-specific intensity-modulated beams (IMBs) were compared with the corresponding data from uniform DMLC fields having similar jaws setting. The measured PD per monitor unit (PD/MU) decreases almost exponentially with out-of-field distance for all uniform DMLC and static fields. For the same strip field width of 1.2 cm, uniform DMLC fields with a larger size of 14 × 22 cm2 deliver an average of 3.51 (SD = 0.51) times higher PD/MU at all out-of-field distances compared to 6 × 6 cm2. Similar to uniform DMLC fields, PD/MU measured from different patient-specific IMBs was found to decrease almost exponentially with out-of-field distance and increase with increase in field dimension. PD per MU from uniform DMLC fields and patient-specific IMBs having similar jaws setting shows good agreement (±7%) except at the most proximal distance, where a variation of more than 10% (maximum 15%) was observed. Our study shows that PD data generated from uniform DMLC fields can be used as baseline data to estimate out-of-field critical organ or whole-body dose in patients treated employing sliding window IMRT if an appropriate correction factor for field dimension is applied. The whole-body dose information can be used to estimate the possible increase in risk of fatal secondary malignancy in patients treated employing sliding window IMRT.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.