Abstract

The presence of the carbohydrate receptor for PNL has been used to identify the previously described morphological types of epithelial cell produced as the stem cell line rat mammary 25 (Rama 25) differentiates to casein secretory alveolar-like cells in vitro. Thus when cultures of the epithelial stem cell line Rama 25 are treated with neuraminidase, fluorescently-conjugated PNL fails to stain cuboidal cells, stains weakly grey cells, and stains strongly the surface of dark cells. When superconfluent cultures of Rama 25 are treated with dimethyl sulfoxide or retinoic acid and prolactin, estradiol, hydrocortisone, and insulin to induce differentiation to alveolar cells, PNL stains strongly the untreated surfaces of droplet cells and casein-secreting vacuolated cells. PNL-staining of the derivative cell lines with truncated cellular pathways, and quantitative binding of [125I]-labeled PNL to the cultured cells are consistent with this cellular staining pattern. The presence of the carbohydrate receptor for peanut lectin (PNL) has also been used to identify specific epithelial cell types in different mammary structures of the developing rat mammary gland, as they differentiate to casein secretory alveolar cells in vivo. Thus when different structures of the developing rat mammary gland are treated with neuraminidase, peroxidase-conjugated PNL fails to stain histochemically the majority of epithelial cells in ducts, stains the cytoplasm of the majority of epithelial cells in terminal end-buds (TEBs), and stains strongly the luminal surfaces of the majority of epithelial cells in alveolar buds (ABs). PNL also stains the untreated luminal surfaces of alveolar cells, whether or not the cells can be stained with a monoclonal antibody to rat beta-casein. Stimulation of mammary differentiation by an analogue of ethyl retinoate or by perphenazine causes cells in end-buds to bind PNL without the necessity for their desialylation similar to that seen in casein secretory alveoli of lactating rats. In conclusion the different interconverting cell types of Rama 25 which form a pathway to casein-secretory cells in vitro are thus equated with recognisable epithelial cell types in vivo. These results suggest that casein-secretory cells in vivo are generated by similar successive interconversions between the major epithelial cell types present in the different mammary structures in the order: ducts, TEBs, ABs, alveoli, and secretory alveoli.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.