Abstract

A particle-size spectrum model is used to estimate standing stocks of some pelagic fish from measurements of phytoplankton chlorophyll in two exploited regions in southern Africa (southern Benguela and off South West Africa/Namibia) and in two unexploited regions (the Agulhas Bank and off the eastern Cape Province). The model is based on the assumption that equal biomasses occur in logarithmically equal size classes in the pelagic marine environment. Phytoplankton, with an equivalent spherical diameter ranging from 1 to 128 μm, occupy 21 size classes on the logarithmic scale. Two different size ranges are assumed for some commercial, pelagic fish species, equivalent to exploitation with two different purse-seine mesh sizes. A mesh of 12,7 mm would catch 8 size classes of pilchard, horse mackerel and anchovy whereas a mesh of 32 mm would catch only 3,3 size classes of pilchard and horse mackerel. From the model, the potential biomass of these commercial pelagic fish is estimated, after allowing for the presence of other commercial and non-commercial fish and other taxa in the exploited size range. Total pelagic fish production is estimated by assuming constant turnover rates of 1·y−1 and 1,5·y−1 when exploited with 32 and 12,7 mm mesh nets respectively. Consideration of the maximum and mean reported catches in the exploited areas indicates that only some 25 per cent of pelagic fish production is exploitable by man. On this basis, the unexploited Agulhas Bank region may yield some 400 000 metric tons (wet) of pelagic fish of the species considered, and the East Coast region some 90 000 tons. Exploitation in these regions cannot be recommended, because the Agulhas Bank is an important spawning ground for many pelagic species, and the fish in both regions probably act as a reserve buffer for the heavily exploited pelagic resource of the Western Cape.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.