Abstract
In anthropological studies, visual indicators of sex are traditionally scored on an ordinal categorical scale. Logistic and probit regression models are commonly used statistical tools for the analysis of ordinal categorical data. These models provide unbiased estimates of the posterior probabilities of sex conditional on observed indicators, but they do so only under certain conditions. We suggest a more general method for sexing using a multivariate cumulative probit model and examine both single indicator and multivariate indicator models on a sample of 138 crania from a Late Mississippian site in middle Tennessee. The crania were scored for five common sex indicators: superciliary arch form, chin form, size of mastoid process, shape of the supraorbital margin, and nuchal cresting. Independent assessment of sex for each individual is based on pubic indicators. The traditional logistic regressions are cumbersome because of limitations imposed by missing data. The logistic regression correctly classified 66/74 males and 46/64 females, with an overall correct classification of 81%. The cumulative probit model classified 64/74 males correctly and 51/64 females correctly for an overall correct classification rate of 83%. Finally, we apply parameters estimated from the logit and probit models to find posterior probabilities of sex assignment for 296 additional crania for which pubic indicators were absent or ambiguous.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.