Abstract

Adsorption of metal nanoparticles is at the heart of many chemical and biosensor techniques, but there are few approaches that can provide quantitative characterisation of individual nanoparticle films fabricated at different times and/or under different conditions. Using synthesised gold nanoparticles (Au NPs) as a model, the nanoparticle films were investigated using an optical interferometry technique known as fringes of equal chromatic order (FECO), which was further systematically validated against both in situ quartz crystal microbalance (QCM) and ex situ atomic force microscopy (AFM) measurements. The results indicate that the FECO wavelengths has a quantifiable red shift with increasing particle densities, making it possible to quantify the degree of surface coverage via the analysis of the fringe shift at a fixed fringe order. Moreover, the calculated formula between the FECO shifts and the surface coverage allows quantitative analysis of the whole adsorption kinetics investigated. Particularly, the as-proposed FECO technique can successfully monitor the Au NP adsorption in situ, which could be a new versatile technology platform for ⿿online⿿ monitoring method, for example in biosensor applications using Au NP-tagged analytes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.