Abstract

Human erythrocytes were separated into five fractions representing different age groups. In each group phospholipid inside-outside translocation was determined by quantitation of the amino phospholipids phosphatidylserine and phosphatidylethanolamine and their lyso-derivatives by thin layer chromatography. To assess the role of transbilayer phospholipid distribution in the recognition and fusion of vesicular stomatitis virus (VSV) and human aged erythrocytes, we monitored the fusion kinetics using the octadecylrhodamine dequenching assay. Fusion of VSV with each single group of red blood cells (RBC) was not detectable with the youngest cells (F1 group) but increased with RBC aging (F2-F5 groups). The same increase in fusion was observed with microvesicles generated from RBC in which aging was mimicked by incubating the cells with Ca2+ in the presence of the Ca2+ ionophore A23187. Conversion of the aminophospholipids to the trinitrophenyl derivative by reaction with trinitrobenzensulfonate completely inhibits fusion on ghosts in which aging was artificially induced by translocation of aminophospholipids in the outer leaflet (symmetric ghosts). These results indicate that RBC become susceptible to VSV fusion during aging and in all pathology related to the aging process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.