Abstract

DNA replication is a highly complex process that achieves the faithful transmission of genetic information from parent to progeny. Recruitment of DNA replication proteins to DNA is dynamically regulated during the cell cycle and in response to replication stresses. For a large-scale analysis of DNA replication proteins, I established a method for analysis of chromatin-bound proteins by SILAC (stable isotope labeling by amino acids in cell culture)-based quantitative proteomics. Here I describe a detailed methodology for SILAC labeling of budding yeast Saccharomyces cerevisiae, then nuclear isolation and chromatin preparation from synchronized yeast cells, prior to quantitative proteomic analysis of DNA replication proteins.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.