Abstract
The use of normalized porosity in models for the porosity dependence of mechanical properties is addressed first for the frequently used power law expression for such dependence, i.e., E/E0 = (1−P)n where E is the property of interest at any volume fraction porosity (P) and E0 is the value of E at P = 0. Normalizing P by PC, the value of P at which the property of interest inherently goes to zero, giving E/E0 = (1−P/PC)n, clearly calls attention to the importance of PC values < 1 (e.g., potentially as low as ∼ 0.2), a fact long known but inadequately recognized. Serious problems from the arbitrary use of both n and PC as fitting parameters with little or no guidance as to the dependence that n and PC (which is microstructurally sensitive) have on the type of porosity are shown. Further, porosity normalization of the power law model indicates at best limited compression of different porosity dependences into a single universal porosity dependence function and little distinguishing of property dependences as a function of the type of porosity. However, normalized porosity of minimum solid area (MSA) models gives a single universal porosity dependence. The difference in responses to P normalization of the two modeling approaches is attributed to their being based respectfully on little or no pore character and on detailed pore character. Thus, P normalization may be a valuable tool for evaluating porosity models, but must be applied in a more rigorous fashion, i.e., PC determined primarily by measurement and correlation with the type of porosity (as with MSA models) and not as an arbitrary fitting parameter as used in the evaluations of the power law model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.