Abstract

One of the characteristic examples of the inability of the classical linear frequency response (FR) method to identify the correct kinetic mechanism is adsorption of some substances (p-xylene, 2-butane, propane or n-hexane) on silicalite-1. The linear FR resulted with bimodal FR characteristic functions, which fitted equally well to three different kinetic models: nonisothermal micropore diffusion, two independent isothermal diffusion processes, and an isothermal diffusion-rearrangement process. We show that the second order frequency response functions (FRFs), obtained from the nonlinear FR, can be used for discrimination among these three mechanisms. Starting from the nonlinear models, we derive the theoretical expressions for the first and second order FRFs corresponding to these three mechanisms and show that different shapes of the second order FRFs are obtained for each mechanism. This would enable identification of the real mechanism from nonlinear FR data.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.