Abstract
AbstractThe efficiency of noninteger n‐generalized exponential type orbitals (NGETO) rn*−1 e with hyperbolic cosine (HC) cosh (βrμ) as radial basis functions in atomic ground state total energy calculations is studied. By the use of these functions, the combined Hartree‐Fock‐Roothaan calculations have been performed for some closed and open shell neutral atoms and their anions and cations with Z ≤ 21. The performance of new basis functions within the minimal basis framework has been compared with numerical Hartree‐Fock (NHF) results. Our total energy values are significantly close to NHF results. The presented minimal basis total energies obtained from the noninteger NGETO with HC are notably better than minimal basis functions total energies previously reported in the literature. It is found that the accuracy of new noninteger NGETO with HC almost correspond to the accuracy of the conventional double‐zeta functions. All the nonlinear parameters are fully optimized. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2012
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.