Abstract

3533 Background: We hypothesized that NGS could identify genomic alterations that guide selection of targeted therapies and discover novel drug targets for primary and metastatic CRC. Methods: DNA was extracted and sequenced from 4 X 10 μ FFPE sections from 40 (32 primary and 8 metastatic) CRCs obtained from 2004-10 (52% male; 48% female; mean age 60 years; 10% Stages I/II; 40% Stage III; 40% Stage IV; 10% Stage unknown) using a targeted NGS assay in a CLIA laboratory (Foundation Medicine). 2574 exons of 145 cancer-related genes plus 37 introns from 14 genes often rearranged in cancer were fully sequenced for point mutations, insertions/deletions, copy number alterations (CNAs) and select gene fusions. Results: NGS revealed 125 genomic alterations in 39/40 tumors (mean 3.1, range1-7) in 21 genes, including 80 base substitutions (64%), 39 insertions/deletions (31%), 4 CNAs (3%) and 2 gene fusions (1.6%). TP53 and APC were altered in 80% (32/40) and 67.5% (27/40) of CRCs respectively, with both mutated more frequently than reported in COSMIC. Alterations associated with potential sensitivity to targeted therapies were identified in 21 (52.5%) of CRCs including: 10 KRAS (TK/MEK inhibitors), 6 BRAF (BRAF inhibitors), 5 FBXW7 (mTOR inhibitors); 2 PIK3CA (PI3K/mTOR inhibitors); 2 BRCA2 (PARP inhibitors); 2 GNAS (MEK/ERK inhibitors) and 1 CDK8 (CDK inhibitors). In 1 CRC, a 5.2 Mb tandem duplication generated a novel C2orf44-ALK gene fusion starting at the canonical exon 20 recombination site previously reported for the majority of ALK gene fusions. cDNA sequencing identified an 90-fold increase in 3’ ALK expression, suggesting the C2orf44-ALK fusion results in ALK kinase domain overexpression and contains the same intracellular domain as other ALK fusions including the ALK inhibitor sensitive EML4-ALK. Conclusions: NGS of broad, cancer-related gene content from FFPE CRC samples uncovered an unexpectedly high frequency of genomic alterations, many of which may be clinically actionable by informing treatment decisions, including a novel ALK gene fusion. This previously unrecognized subset of CRC patients may be candidates for clinical trials of crizotinib or other ALK inhibitors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call