Abstract

AbstractA neural networks (NN) model was trained and validated using experimental data on roasting times and weight losses from beef joints. Mathematical and response surface (RS) models were also developed. Predicted results from NN and RS models were almost identical and better than the mathematical model. Using the trained NN and RS models, the effects of air temperature, dimension, weight of beef joint, its initial temperature on roasting time, and weight loss were investigated. An increase in air or initial beef temperature decreased roasting time but increased weight loss. For larger beef joints, both roasting time and weight loss increased significantly. Critical ratios of beef radius to length where roasting time and weight loss reached maximum values were found to be 0.45 using both NN and RS models for roasting time and 0.55 (NN model) or 0.6 (RS model) for weight loss. To improve productivity and reduce weight loss, small beef joints are recommended and beef joints with the critical ratios should be avoided.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.