Abstract
This paper reports the using of neural networks for water quality analysis in a tropical urban stream before (2002) and after sewerage building and the completion of point-source control-based sanitation program (2003). Mathematical modeling divided water quality data in two categories: (a) input of some in situ water quality variables (temperature, pH, O2 concentration, O2 saturation and electrical conductivity) and (b) water chemical composition (N-NO2(-); N-NO3(-); N-NH4(+) Total-N; P-PO4(3-); K+; Ca2+; Mg+2; Cu2+; Zn2+ and Fe+3) as the output from tested models. Stream water data come from fortnightly sampling in five points along the Ipanema stream (Southeast Brazil, Minas Gerais state) plus two points downstream and upstream Ipanema discharge into Doce River. Once the best models are consistent with variables behavior we suggest that neural networking shows potential as a methodology to enhance guidelines for urban streams restoration, conservation and management.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.