Abstract

Background: The goal of fluid challenge (FC) is to increase cardiac output (CO) and oxygen delivery (DO2) (known as fluid responders) to correct tissue hypoxia. To optimize fluid administration, fluid challenge (FC) during dependence of oxygen consumption on oxygen delivery (VO2/DO2 dependency) would correct tissue hypoxia confirmed by an increase of oxygen consumption (VO2) and oxygen delivery (DO2) after FC (known as VO2 responders) and get more benefit from a reduction in tissue hypoxia. Markers of anaerobic metabolisms, such as blood lactate concentration or the ratio of venous-arterial CO2 tension difference (P(cv-a)CO2) over arterial-to-venous oxygen content difference (C(a-cv)O2), can predict VO2 responders but still have several limitations. Therefore, near-infrared spectroscopy (NIRS) has been developed to evaluate tissue perfusion, presented as tissue oxygen saturation (StO2), at the bedside. Combining StO2 with the vascular occlusive test (VOT) and introducing a short period of forearm ischemia is a non-invasive technique to examine microvascular alterations at the bedside. However, a study validating the ability of these variables to predict VO2 response has not been conducted. Methods: We plan to conduct a single-center prospective study on circulatory failure patients. The cardiac index (CI), oxygen delivery (DO2), oxygen consumption (VO2), arterial lactate, central venous oxygen saturation (ScvO2), ratio of venous-arterial carbon dioxide tension to arterial-to-central venous oxygen content difference (P(cv-a)CO2/ C(a-cv)O2), and tissue oxygen saturation measured by near-infrared spectroscopy (NIRS) probe during vascular occlusion test variables (NIRS-VOT variables) will be collected before and after the fluid challenge. Hypothesis: We hypothesize that markers of reactive hyperemia by NIRs will predict an increase in VO2 after FC in patients with circulatory shock. Ethics: The study protocol has been approved by the ethics committee of the faculty of medicine, Ramathibodi Hospital, Mahidol University (COA. MURA2022/80).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call