Abstract
Although the continuous hidden Markov model (CHMM) technique seems to be the most flexible and complete tool for speech modelling. It is not always used for the implementation of speech recognition systems because of several problems related to training and computational complexity. Thus, other simpler types of HMMs, such as discrete (DHMM) or semicontinuous (SCHMM) models, are commonly utilised with very acceptable results. Also, the superiority of continuous models over these types of HMMs is not clear. The authors' group has previously introduced the multiple vector quantisation (MVQ) technique, the main feature of which is the use of one separated VQ codebook for each recognition unit. The MVQ technique applied to DHMM models generates a new HMM modelling (basic MVQ models) that allows incorporation into the recognition dynamics of the input sequence information wasted by the discrete models in the VQ process. The authors propose a new variant of HMM models that arises from the idea of applying MVQ to SCHMM models. These are SCMVQ-HMM (semicontinuous multiple vector quantisation HMM) models that use one VQ codebook per recognition unit and several quantisation candidates for each input vector. It is shown that SCMVQ modelling is formally the closest one to CHMM, although requiring even less computation than SCHMMs. After studying several implementation issues of the MVQ technique. Such as which type of probability density function should be used, the authors show the superiority of SCMVQ models over other types of HMM models such as DHMMs, SCHMMs or the basic MVQs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEE Proceedings - Vision, Image, and Signal Processing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.