Abstract

Position specific scoring matrices (PSSMs) corresponding to aligned sequences of homologous proteins are commonly used in homology detection. A PSSM is generated on the basis of one of the homologues as a reference sequence, which is the query in the case of PSI-BLAST searches. The reference sequence is chosen arbitrarily while generating PSSMs for reverse BLAST searches. In this work we demonstrate that the use of multiple PSSMs corresponding to a given alignment and variable reference sequences is more effective than using traditional single PSSMs and hidden Markov models. Searches for proteins with known 3-D structures have been made against three databases of protein family profiles corresponding to known structures: (1) One PSSM per family; (2) multiple PSSMs corresponding to an alignment and variable reference sequences for every family; and (3) hidden Markov models. A comparison of the performances of these three approaches suggests that the use of multiple PSSMs is most effective. ns@mbu.iisc.ernet.in.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.