Abstract
There is broad interest in the use of cell therapies and cell products for treatment of a variety of diseases and problems. Of interest to the military, cellular therapies have the potential to confer tremendous benefit for treatment of both acute and chronic injuries. Although many different cell therapy products are currently under investigation, mesenchymal stromal cells (MSCs) are good candidates, based on their ability to respond to inflammation, limit vascular permeability, and modulate immune responses to injury. Although a large number of clinical trials utilize MSCs or their products, there is no firm consensus defining the characteristics and activities of a good MSC product. Here, we test multiple human MSCs in several assays designed to test potency, to determine if functionally relevant differences between MSCs can be defined using in vitro assays, allowing identification of superior MSC products for preclinical or clinical testing. Human MSCs derived from several tissue sources (adipose, bone marrow, umbilical cord) were evaluated for their ability to respond to inflammatory signaling by upregulating indoleamine-2,3-dioxygenase and TSG6, suppress lymphocyte proliferation, alter the polarization of macrophages, and affect tube formation by endothelial cells. All MSCs tested displayed activity in the functional assays utilized, but differences in potency were observed in each assay. The indoleamine-2,3-dioxygenase enzyme activity assay represents a simple way to screen multiple samples. The mixed lymphocyte reaction and monocyte assays used to test interactions between MSCs and immune cells are more involved but give direct information on immunomodulation potential. The endothelial cell tube formation assay is relatively simple to perform but a large number of images must be generated and analyzed. However, it tests a functional activity other than immunomodulation and, therefore, adds another facet to MSC evaluation.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.