Abstract

We propose an analytical strategy to improve the sensitivity for detecting a protein biomarker through signal multiplication by manipulating multiple peptide-based surface-enhanced Raman scattering (SERS) probes to bind the biomarker. Protective antigen (PA) was used as an Anthrax biomarker in this study. For this purpose, five small peptides selective to various PA epitopes with different binding affinities were chosen and peptide-conjugated Au nanoparticle (AuNP) SERS probes were individually prepared using each peptide. Initially, five different SERS probes were separately used to detect PA and the sensitivities were compared. Next, the possibility of enhancing sensitivity by employing multiple SERS probes was examined. Rather than applying the probes simultaneously, which would induce competitive binding, each probe was added sequentially and an optimal probe-addition sequence was determined to provide maximal sensitivity. Finally, PA samples at seven different concentrations were measured with the optimal sequence. The limit of detection (LOD) was 0.1 aM, and the enhancement was more effective at lower PA concentrations. The proposed scheme can be further applicable to detect other protein biomarkers to diagnose various diseases.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.