Abstract

The purification of N,N-dimethylformamide wastewater involves an energy intensive distillation process. We propose a novel energy-saving process scheme involving multiple inter-reboilers sed. In this scheme, ideal thermodynamic model non-random two liquid (NRTL) model was used to calculate the phase equilibrium using Aspen Plus platform. While the relationship between important process parameters and energy consumption by the distillation process was studied, several parameters such as the most suitable positions for the inter-reboilers and the most reasonable steam extraction rates were obtained. The feasibility was detected under the same separation duties and main technological structure. For 10wt% DMF wastewater, the inter-reboilers were installed on the 37th, 38th and 39th plates, while the corresponding heat transferred values were 3,038 kW, 91 kW and 179kW, respectively. In comparison to the conventional distillation process, an energy consumption of 77.43% and thermodynamic efficiency of 65.69% were obtained. For 20 wt% DMF wastewater, the inter-reboilers were installed on the 21st and 25th plate, while the corresponding values for the heat transferred were 1,632kW, and 1,450kW, respectively. In comparison to the conventional distillation process, the energy consumption can be reduced by 71.31%, while the thermodynamic efficiency can be improved by 47.10%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.