Abstract
AbstractNested case‐control and case‐cohort studies are useful for studying associations between covariates and time‐to‐event when some covariates are expensive to measure. Full covariate information is collected in the nested case‐control or case‐cohort sample only, while cheaply measured covariates are often observed for the full cohort. Standard analysis of such case‐control samples ignores any full cohort data. Previous work has shown how data for the full cohort can be used efficiently by multiple imputation of the expensive covariate(s), followed by a full‐cohort analysis. For large cohorts this is computationally expensive or even infeasible. An alternative is to supplement the case‐control samples with additional controls on which cheaply measured covariates are observed. We show how multiple imputation can be used for analysis of such supersampled data. Simulations show that this brings efficiency gains relative to a traditional analysis and that the efficiency loss relative to using the full cohort data is not substantial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.