Abstract
Egg yolk contamination of egg whites continues to be a serious problem in the egg industry. The ability of egg whites to form stable and voluminous foams is greatly inhibited by yolk contamination, even at very low levels, between 0.01% and 0.2% w/w yolk in white. Experiments were conducted to determine if Mucor miehei lipase could regenerate the functional properties of yolk-contaminated egg whites. Lipase from M. miehei and colipase from porcine pancreas were added to yolk-contaminated (0.2%, w/w) egg white samples to hydrolyze triglycerides originating from egg yolk. Enzymatic hydrolysis of triacylglycerols was confirmed using thin-layer chromatography. Treatment of yolk-contaminated samples with lipase and colipase yielded significant (P < 0.05) improvements in a number of the functional properties, including the final foam volume, foam capacity, and foaming power. These functional properties showed complete restoration to control levels. However, foam stability and foam drainage levels were not statistically different from yolk-contaminated samples that had not been enzymatically treated. Enzyme-treated yolk-contaminated egg whites were also tested in angel food cakes. Enzyme-treated, yolk-contaminated egg whites performed similarly to non-yolk-contaminated control, and much better than yolk-contaminated sample in angel food cakes. The results show that most negative effects of yolk contamination can be reversed by treatment with Mucor miehei lipase and colipase.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.