Abstract

Upward‐looking acoustic Doppler current profilers (ADCPs) (300 kHz) and echosounders (125 kHz) were deployed on moorings at South Georgia to measure abundance of Antarctic krill continuously over several months. Echoes from krill were identified using the theoretical difference in echo intensity at 300 and 125 kHz and scaled to krill density using target strengths appropriate for krill in the region: krill size was determined from diet samples from furseals and penguins foraging near the moorings. A method using water flow past the moorings was developed to convert time‐based acoustic observations of krill to area‐based abundance estimates. Flow past the stationary moorings was treated analogously to motion along‐track of a research vessel through a nominally stationary body of water during a conventional survey. The moorings thus provide a Eulerian view of variation in krill abundance. This is ecologically instructive for South Georgia, where krill are generally passive drifters on currents and where temporal fluctuations in abundance have significant consequences for krill‐dependent predators. Moorings were positioned on routine research vessel survey transects, and validity of the mooring method was assessed by comparison of mooring and vessel observations. Krill density estimates from the moorings were not statistically different from vessel estimates in adjacent time periods. A time series of krill density from a mooring revealed step‐changes that were not seen during short‐term vessel surveys. Moorings deliver data over time scales that cannot be achieved from research vessels and provide insight on environmental factors associated with variation in krill abundance at South Georgia. Mooring data may aid ecosystem‐based management.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.