Abstract

Phosphoester bond cleavage of para-nitrophenylphosphate (pNPP), a commonly used model substrate, is accelerated by using the complex MoO(2)Cl(2)(DMF)(2) (1) (DMF = dimethylformamide) as a hydrolysis promoting agent, even when catalytic amounts of 1 (10 mol% relative to pNPP) are used. The reactions were performed under mild conditions (37-75 °C) and followed by (1)H NMR spectroscopy. For assays performed with high amounts of 1 (1000 mol% relative to pNPP), a white solid (2) precipitates during the initial stages of the reaction, which subsequently dissolves, leading eventually to the precipitation of a less soluble yellow solid (3). Taken together, the characterization data for 2 (FT-IR spectroscopy, elemental analysis, (1)H and (13)C NMR, and electrospray ionization mass spectrometry) indicate that it is a polymeric material with the formula Mo(2)O(6)(DMF)(n) and a structure comprising infinite isopolyoxomolybdate chains built up from edge-shared {MoO(6)} octahedra. Compound 3 was identified as the Keggin-type phosphomolybdate [(CH(3))(2)NH(2)](3)PMo(12)O(40). The formation of 3 is explained by the reaction of inorganic phosphate ions with isopolymolybdate species derived from 2, with dimethylammonium ions arising from the degradation of DMF. Both 2 and 3 are active for phosphoester bond hydrolysis with conversion profiles comparable to the ones obtained with the precursor 1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.