Abstract

This study used molecular beacon technology to examine substrate-dependent changes in integrin subunit expression in living cells. Molecular beacons are oligonucleotide probes that can be delivered into live cells to allow for real-time imaging of mRNA. They have a stem-loop hairpin structure with a fluorophore-quencher pair, which opens when bound to the target mRNA sequence, resulting in a fluorescent signal upon excitation. A novel molecular beacon that is specific to the β1 integrin subunit mRNA was developed and used to image osteoblast-like MG63 cells in vitro on both glass and titanium surfaces of varying roughness. Specificity was verified by comparing the molecular beacon signal intensities to real-time PCR results in both wild-type cells and cells with shRNA knockdown of β1 integrin mRNA. The molecular beacon was able to detect changes due to both surface microtopography and silencing of the mRNA target. The results showed that effects of the substrate on β1 mRNA noted previously in confluent cultures were evident in pre-confluent cells as well, supporting the hypothesis that β1 integrin pairs are important in proliferation as well as differentiation of osteoblasts. This technique overcomes the limitations of traditional gene assays (PCR, immunofluorescence) by allowing for the real-time measurement and tracking of specific mRNAs in individual live cells prior to confluence.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.