Abstract

This paper proposes a modification for the symbolic synthesis method of analog circuits using admittance matrix expansion. The modification involves a generalization of the synthesis approach to employ mirror elements (voltage mirrors and current mirrors) in the admittance matrix expansion and ideal description of active elements, rather than using only nullor elements (nullators and norators). Accordingly, more alternative ideal representations, based on nullor-mirror elements, can be realized and a wide range of active elements can be used in the circuit synthesis. Systematic synthesis of the CCII-based generalized impedance converters (GICs) is presented as an application example to illustrate the potential of this generalized approach. Multiple equivalent nullor-mirror realizations for the GIC could be extracted easily, by virtue of using mirror elements in the admittance matrix expansion. Consequently, numerous circuit realizations, spanning various combinations of CCII types, have been generated in a simple and direct way.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.