Abstract

In microhole machining of metal, micro electro-discharge machining (MEDM) is an effective method that can easily create a hole with a diameter under 100 μm. Due to the poor surface quality and shape of MEDM, a machining method that compounds MEDM and micro ultrasonic vibration lapping (MUVL) is proposed here to allow the production of high precision microholes with high aspect ratios. In our investigations, first, a circular or stepped circular microtool was made by the MEDM process, and the tool was used to create a microhole on a small piece of titanium plate in the same machining process. Finally, the abrasive particles driven by the same tool were utilized to grind this hole in the MUVL procedure, and a hole with a diameter about 100 μm can be obtained. Owing to the microtool and workpiece not taking apart from the clamping apparatus during different machining steps, the microhole was processed in the co-axial situation, so the precise shape and perfect surface can be obtained easily. For example, the diameter variation between the entrances and exits of the microholes could reach a value of about 5 μm when the workpiece had a thickness of 500 μm, if the circular microtools was used. Meanwhile, the roundness of the microholes clearly improved, regardless of whether circular or stepped tools were used. However, owing to the perfect grinding effect between the microholes and microtools, the stepped circular tools produced high quality surfaces more easily than the circular tools.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call