Abstract

Sisal (Agave sisalana) is the main hard fiber produced worldwide, with an estimated generation of 400 thousands t in 2011. From its leaves, only the hard fibers, which represent 3–5% of their weight, are removed. The remaining 95–97% is referred to as sisal waste and contains steroidal saponins that can be potentially used in foods, cosmetics and pharmaceuticals formulations, as well as for soil bioremediation. The present work aimed at to evaluate strategies for the extraction and concentration of saponins from sisal waste, focused on the use of clean solvents, such as water and ethanol. For this purpose, it was firstly performed a central composite rotatable design for the optimization of the extraction conditions followed by a comparison of this strategy with other methods (Soxhlet, ultrasound-assisted extraction and micellar extraction). Cloud point preconcentration was then tested, using several types and concentrations of salts. The use of orbital shaker extraction (200rpm) with an ethanolic solution (30%, v/v) at 50°C, a mass/volume ratio sisal/solvent of 0.17 (g/mL) for 4h allowed a recovery of 38.6% of the saponins. When a micellar extraction strategy using 7.5% (v/v) of Triton X-100, under the above-mentioned conditions was performed, saponins recovery raised to 98.4%. In a subsequent step, the addition of 20% (m/v) sodium carbonate led to a preconcentration factor of 20.3. The best adsorbent for Triton removal from the preconcentrated solution was Amberlite FPX-66. The process strategy proposed in the present study showed to be efficient for saponins extraction and preconcentration from a low-cost, highly available agricultural waste.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.