Abstract

Parkinson's disease (PD) is a common neurodegenerative disorder. It has a delitescent onset and a slow progress. The clinical manifestations of PD in patients are highly heterogeneous. Thus, PD diagnosis process is complex and mainly depends on the professional knowledge and experience of the physician. Magnetic resonance imaging (MRI) could detect the small changes in the brain of PD patients, and quantitative analysis of brain MRI may improve the clinical diagnosis efficiency. However, due to the complexity of clinical courses in PD and the high dimensionality in multimodal MRI data, traditional mathematical analysis could not effectively extract the huge information in them. Up to now, the accuracy of PD diagnosis in large sample size is still unsatisfying. As artificial intelligence (AI) is becoming more mature, varieties of statistical models and machine learning (ML) algorithms have been used for quantitative imaging data analysis to explore a diagnostic result. This review aims to state an overview of existing research recently that used statistical ML/AI methods to perform quantitative analysis of MR image data for the study of PD diagnosis. First we review the recent research in three subareas: diagnosis, differential diagnosis, and subtyping of PD. Then we described the overall workflow from MR image to classification result. Finally, we summarized a critical assessment of the current research and provide some recommendations for likely future research developments and trends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call