Abstract

BackgroundInherited, iatrogenic, and metabolic corneal disease could be potentially treated by supplying a functional gene or changing the expression levels of specific genes. Viral-based gene therapy is efficient, but restricted by evoking immune responses and inflammation. This study aimed to transfect mouse cornea with a non-viral based (oscillating magnetofection) method. MethodsCultured mouse corneas were treated with magnetic nanoparticles (MNP) tethered to CAG promoter and green fluorescent protein (GFP) reporter plasmids exposed to a 1 Hz, 2 Hz, and 4 Hz oscillating magnetic field for 30 min and 60 min and in three DNA:MNP ratios (1:2, 1:1, 2:3). Corneas were cultured for up to 3 days and their green fluorescent channel intensity and number of GFP-positive cells were recorded. Transfection efficiency was estimated as the percentage of GFP-positive cells per total cells in a microscopic field. FindingsControl experiments with absent magnetic exposure showed no GFP-positive cells. The optimum condition was recorded at 3:2 DNA:MNP ratio, 1 Hz magnetic oscillation, and 30 min duration of magnetic exposure (mean GFP-positive endothelial cell count 191·7 [SD 54·5], p=0·009; mean green fluorescent intensity 85·3 [SD 48·5]; and average transfection efficiency 23·3% [range 10·6–30·9]). InterpretationA novel non-viral method of transfecting cornea, magnetofection, is demonstrated and gives proof of principle for its translation into corneal gene therapy. FundingWelsh Clinical Academic Training Scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call