Abstract

Carpal tunnel syndrome (CTS) is a common condition diagnosed using physical exams and electromyography (EMG) data. This study aimed to classify CTS severity using machine learning techniques. EMG data from 154 patients, including measurements of motor and sensory latency, velocity, and amplitude, were used to form a six-dimensional feature space. Classifiers such as DT, LDA, NB, SVM, k-NN, and ANN were applied, and the feature space was reduced using ANOVA, MRMR, Relieff, and PCA. The DT classifier with ANOVA feature selection showed the best performance for both full and reduced feature spaces.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.