Abstract
Data and transplant community opinion on delayed graft function (DGF), and its impact on outcomes, remains varied. An unsupervised machine learning consensus clustering approach was applied to categorize the clinical phenotypes of kidney transplant (KT) recipients with DGF using OPTN/UNOS data. DGF was observed in 20.9% (n = 17,073) of KT and most kidneys had a KDPI score <85%. Four distinct clusters were identified. Cluster 1 recipients were young, high PRA re-transplants. Cluster 2 recipients were older diabetics and more likely to receive higher KDPI kidneys. Cluster 3 recipients were young, black, and non-diabetic; they received lower KDPI kidneys. Cluster 4 recipients were middle-aged, had diabetes or hypertension and received well-matched standard KDPI kidneys. By cluster, one-year patient survival was 95.7%, 92.5%, 97.2% and 94.3% (p < 0.001); one-year graft survival was 89.7%, 87.1%, 91.6%, and 88.7% (p < 0.001). There were no differences between clusters after accounting for death-censored graft loss (p = 0.08). Clinically meaningful differences in recipient characteristics were noted between clusters, however, after accounting for death and return to dialysis, there were no differences in death-censored graft loss. Greater emphasis on recipient comorbidities as contributors to DGF and outcomes may help improve utilization of DGF at-risk kidneys.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transplant international : official journal of the European Society for Organ Transplantation
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.