Abstract

Wave equation wave field numerical modeling technology is applied to the observation that deep layer imaging is difficult below a screening layer of high-velocity basalt. Three simple high-velocity basalt models are designed on the basis of basalt formation characteristics. The analysis of deep-layer reflection seismic signal energy shows that low-frequency seismic signals are capable of both penetrating the thin high-velocity basalt layer and reducing the diffraction noise caused by the rough surfaces. The simulation experiment of a complete 2D basalt model confirms that the low-frequency signals can be used to boost the quality of deep-layer imaging under the high-velocity basalt layer and achieve good results in low-pass filter processing of actual data.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call