Abstract

Computational prediction of cancer associated SNPs from the large pool of SNP dataset is now being used as a tool for detecting the probable oncogenes, which are further examined in the wet lab experiments. The lack in prediction accuracy has been a major hurdle in relying on the computational results obtained by implementing multiple tools, platforms and algorithms for cancer associated SNP prediction. Our result obtained from the initial computational compilations suggests the strong chance of Aurora-A G325W mutation (rs11539196) to cause hepatocellular carcinoma. The implementation of molecular dynamics simulation (MDS) approaches has significantly aided in raising the prediction accuracy of these results, but measuring the difference in the convergence time of mutant protein structures has been a challenging task while setting the simulation timescale. The convergence time of most of the protein structures may vary from 10 ns to 100 ns or more, depending upon its size. Thus, in this work we have implemented 200 ns of MDS to aid the final results obtained from computational SNP prediction technique. The MDS results have significantly explained the atomic alteration related with the mutant protein and are useful in elaborating the change in structural conformations coupled with the computationally predicted cancer associated mutation. With further advancements in the computational techniques, it will become much easier to predict such mutations with higher accuracy level.

Highlights

  • Most genetic variations in human were portrayed by single nucleotide polymorphisms (SNPs), and most of them were thought to cause phenotypic differences amid individuals

  • From the 200 ns Molecular dynamics (MD) simulation, we suggested that the G325W mutation induced major phenotypic damages in aurora-A kinase protein and altered its structural behaviour in 3D space, which might play an important role in inducing hepatocellular carcinoma

  • The results showed that the long-range computational simulations provided clear picture of conformational changes occurring in the computationally predicted disease associated mutant protein structure

Read more

Summary

Introduction

Most genetic variations in human were portrayed by single nucleotide polymorphisms (SNPs), and most of them were thought to cause phenotypic differences amid individuals. Due to the use of high-throughput sequencing methods, the amount of identified variants in the human genome was rising rapidly, but studying their phenotypic outcome was a laborious task. Processing of these vast amounts of SNPs needs the improvement of regular annotation tools. Krishnan and Westhead [10] applied decision tree and support vector machine (SVM) techniques to the in vitro mutagenesis data sets as well as to SNPs in the nematode worm species Caenorhabditis elegans to examine their effectiveness in SNP characterization These efforts were further accompanied by several other researches that demonstrated the effective use of computational tools and algorithms for accurate characterization of SNPs [1].

Author Summary
Materials and Methods
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call