Abstract
The traffic-forecasting model, when considered as a system with inputs of historical and current data and outputs of future data, behaves in a nonlinear fashion and varies with time of day. Traffic data are found to change abruptly during the transition times of entering and leaving peak periods. Accurate and real-time models are needed to approximate the nonlinear time-variant functions between system inputs and outputs from a continuous stream of training data. A proposed local linear regression model was applied to short-term traffic prediction. The performance of the model was compared with previous results of nonparametric approaches that are based on local constant regression, such as the k-nearest neighbor and kernel methods, by using 32-day traffic-speed data collected on US-290, in Houston, Texas, at 5-min intervals. It was found that the local linear methods consistently showed better performance than the k-nearest neighbor and kernel smoothing methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Transportation Research Record: Journal of the Transportation Research Board
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.