Abstract

BackgroundLight Detection and Ranging (LiDAR) has been successfully used to describe a wide range of forest metrics at local, regional and national scales. However, little research has used this technology in young Douglas-fir stands to describe key stand characteristics used as criterion for operational thinning. The objective of this research was to develop models of Douglas-fir mean top height, basal area, volume, mean diameter (at breast height), green crown height and stand density from LiDAR and stand information.MethodsData for this study were obtained from four widely separated young (age range of 9 to 17 years) Douglas-fir plantations in the South Island, New Zealand. LiDAR was acquired for the entire area and stand metrics were measured within 122 plots established across the study area. Spatially synchronous stand and LiDAR metrics were extracted from the plots. Using this dataset, multiple regression models were developed for each of the six stand metrics.ResultsThe final models constructed for mean top height, green crown height, total stem volume, mean diameter, basal area, and stand density had R2 values of 0.85, 0.79, 0.86, 0.86, 0.84 and 0.55, respectively, with root mean square errors of 1.02 m, 0.427 m, 20.2 m3 ha-1, 13.9 mm, 3.81 m2 ha-1 and 355 stems ha-1, respectively. With the exception of stand density, all relationships were relatively unbiased. Variables with the greatest contribution (with the partial R2 in brackets) to models of mean top height, green crown height, volume, mean diameter and basal area included the 75th (0.85), 1st (0.76), 10th (0.83), 95th (0.74), and 10th (0.72) LiDAR height percentiles. The LiDAR height interquartile distance was the most important contributor (partial R2 = 0.33) to the model of stand density.ConclusionWith the exception of stand density, the final models for stand metrics were sufficiently precise to be used for scheduling thinning operations. This study demonstrates the utility of LiDAR to accurately estimate key structural attributes of young Douglas-fir and to assist with forest management over a widely dispersed resource.

Highlights

  • Light Detection and Ranging (LiDAR) has been successfully used to describe a wide range of forest metrics at local, regional and national scales

  • Important metrics describing the state of the current stand that affect thinning decisions include height, stand density, tree diameter at breast height of 1.4 m, volume, basal area and green crown height (Reukema 1975; Emmingham and Green 2003)

  • The results of this study suggest that an accurate stand density map would provide a useful source of ancillary information to support use of LiDAR in predictions of stand metrics

Read more

Summary

Introduction

Light Detection and Ranging (LiDAR) has been successfully used to describe a wide range of forest metrics at local, regional and national scales. The objective of this research was to develop models of Douglas-fir mean top height, basal area, volume, mean diameter (at breast height), green crown height and stand density from LiDAR and stand information. Thinning is an important management operation and has a major impact on Douglas-fir stand development. Douglas-fir responds well to thinning and this operation is necessary to avoid stand stagnation and achieve merchantable sized logs over economically viable time frames. Important metrics describing the state of the current stand that affect thinning decisions include height, stand density (stocking), tree diameter at breast height of 1.4 m, volume, basal area and green crown height (Reukema 1975; Emmingham and Green 2003)

Objectives
Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.