Abstract

A description is given of the methodology developed in our laboratory for the application of laser flash photolysis to the elucidation of the kinetics and mechanism of electron transfer processes which occur intermolecularly between two protein molecules within a collisional complex, or intramolecularly between two redox centers within a single multisubunit or multidomain protein. This involves the use of flavin analogs, excited to their lowest triplet state by a laser flash, to initiate electron transfer, either by oxidation of a sacrificial donor followed by redox protein reduction via the flavin semiquinone, or by direct oxidation of a reduced redox protein by the flavin triplet. Time-resolved spectrophotometry is used to follow the course of the sequence of electron transfer events initiated by the laser flash. The application of this methodology to the following systems is described: cytochrome c/cytochrome c peroxidase; ferredoxin/ferredoxin NADP + reductase; cytochrome c/plastocyanin; flavocytochrome b 2; and sulfite oxidase.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.