Abstract

The problem of groundwater supply in the Bamun plateau situated in the Cameroon Volcanic Line exists and no proper solution has been found so far. This investigation intends to find the suitable groundwater potential zones by overlaying the geomorphologic map, lineament map, lineament density map and lithological map, using visual interpretation of Landsat imagery. The results reveal that about 1921 structural elements, ranging in size, from 30 m to 5.845 km with an average length of 671 m in the field. The total length of the mapped lineaments is approximately 1289 km. The most important lineament (5.845 km length) diagonally crosses the study area in the direction NNE-SSW. In addition to this trend, all others are smaller than 14 km. More than 92% of lineaments are less than 5 km in size and only 1.3% of them are larger than 10 km. Small lineaments are thus the most numerous. According to their directions, the lineaments listed are grouped into 18 directional classes of 10-degree intervals. The rosette of their directions highlights the preferred directions NE-SW, N-S, E-W, NNE-SSW and ENE-WSW. Most of the lineaments clusters in the central part of the area are N20° - 30°E and N60° - 70°E trending lineaments. In this study, the NE-SW trend dominates the structural trend followed by NW-SE and N-S. This can be an indication of the directions of groundwater movement in the area. Alluvial plain and valley have moderate to very good groundwater potential that occurs all over the study area. Porosity of the volcanic rocks varies greatly, but it is everywhere more porous than the underlying, unweathered bedrock. There are essentially three classes (low, average and high) of groundwater potential zones. Hight potential zones are observed around the localities of the Khogham, Mbatpit and Mbam massifs on the one hand and Manswen, Njikwop, Mfelap, Foumban, Njindaré, Nkoundem and Ngwen jigoumbé localities on the other hand. About 13% of the area has good groundwater potential around the mountains while 58% is moderately good which corresponds to high to moderate lineament densities situated at average altitude 1200 m and about 31% of the area has poor groundwater potential corresponding to low lineament density areas. Moreover, this work has helped develop a detailed lineament map that can be used for mining and hydrological prospecting campaigns.

Highlights

  • The tectonic behaviour and the potential to develop groundwater and flow in fractured rocks require effective approaches to characterise fracture

  • More than 92% of lineaments are less than 5 km in size and only 1.3% of them are larger than 10 km

  • The lineaments listed are grouped into 18 directional classes of 10-degree intervals

Read more

Summary

Introduction

The tectonic behaviour and the potential to develop groundwater and flow in fractured rocks require effective approaches to characterise fracture. The term fracture refers to joints and faults, as well as varied discontinuities or lineaments over different scales and lithologies due to crustal tectonic driving forces [1]. These discontinuities or lineaments may act as a drain for groundwater movement which results in increased secondary porosity and can serve as groundwater potential zone. Landsat 8/LDCM (Landsat Data Continuity Mission) satellite was launched since February 11, 2013 after the disfunctioning of the Landsat 7 sensor This satellite acquired images in 9 bands from the visible to infrared with the OLI (Operational Land Imager) radiometer and 2 bands in thermal infrared with the TIRS (Thermal Infrared Sensor) radiometer. Lineaments that may act as conduits for fluid flow are of particular importance in this investigation

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call