Abstract
Electron energy loss experiments combined with microscopy have proven to be a valuable tool for the exploration of the structure of electronic excitations in materials. These types of excitations, however, are difficult to measure because of their small intensity. In a usual situation, the filament of the microscope is run at a very high temperature in order to present as much intensity as possible at the specimen. This results in a degradation of the ultimate energy resolution of the instrument due to thermal broadening of the electron beam.We report here observations and measurements on a new LaB filament in a microscope-velocity spectrometer system. We have found that, in general, we may retain a good energy resolution with intensities comparable to or greater than those available with the very high temperature tungsten filament. We have also explored the energy distribution of this filament.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Proceedings, annual meeting, Electron Microscopy Society of America
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.