Abstract

Hysteresis effects hinder the accurate control of electromagnetic actuators and require auxiliary sensors for properly determining the hysteretic system state. The physics-based Jiles-Atherton and the phenomenological Preisach hysteresis models provide powerful means to describe the magnetic hysteresis and its inverse. In this paper, we consider both hysteresis models in the scalar form from the control points of view, with a primary objective of the sensorless inverse feed-forward control. The identification complexity, the runtime, and the space efficiency of the control-oriented implementation are analyzed and compared for both modeling approaches. Their control performance for an inverse hysteresis compensation is experimentally evaluated on a specific force-controlled electromagnet system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.