Abstract

A numerical formulation for solving homogeneous anisotropic heat conduction problems based on the use of an isotropic fundamental solution is presented in detail. The analysis is carried out assuming a generic position of the coordinate axes, which may not coincide with the principal directions of orthotropy of the material. The two primary integral equations of the method are derived from the governing differential equation of the problem. Then, the numerical procedure is developed by rewriting the internal degrees of freedom that arise from the domain discretization in terms of the boundary nodes and solving the resulting system of linear equations for the boundary unknowns only. Special attention is given to the differentiation of singular integrals which yields additional terms as well as to the evaluation of the resulting Cauchy principal value integral. The main feature of the proposed formulation is its generality, which makes possible its direct extension to solve the problem of three‐dimensional heat conduction in anisotropic media and, foremost, to three‐dimensional orthotropic and anisotropic elasticity or elastoplasticity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.