Abstract

Wildfires and associated emissions of particulate matter pose significant environmental and health concerns. In this study we propose tools to evaluate building resilience to extreme episodes of outdoor particulate matter using a combination of indoor and outdoor IoT measurements, coupled with survey-based information of occupants' perception and behaviour. We demonstrated the application of the tools on two buildings with different modes of ventilation during the Chico Camp fire event. We characterized the resilience of the buildings on different temporal and spatial scales using the well-established I/O ratio and a newly proposed E-index that evaluates indoor concentration in the context of adopted 24-hour exposure thresholds. Indoor PM2.5 concentration during the entire Chico Camp Fire event was 21 μg/m3 for 4th Street (Mechanically Ventilated) and 36 μg/m3 for Wurster Hall (Naturally Ventilated). The cumulative median I/O ratio during the fire event was 0.27 for 4th Street and 0.67 for Wurster Hall. Overall E-index for 4th Street was 0.82, suggesting that the whole building was resilient to outdoor air pollution while overall E-index was 1.69 for Wurster Hall suggesting that interventions are necessary. The survey revealed that occupant perception of workplace air quality aligns with measured PM2.5 in the two buildings. The results also highlight that a large portion of occupants wore face masks, even though the PM2.5 concentration was below WHO threshold level. The results of our study demonstrate the utility of the proposed IoT-enabled and survey tools to assess the degree of protection from air pollution of outdoor origin for a single building or across a portfolio of buildings. The proposed survey tool also provides direct links between the PM2.5 levels and occupants' perception and behavior.

Highlights

  • In recent years, we have observed increased wildfire frequency and intensity in response to global warming [1]

  • The results show that concentration peaks and median mass concentrations for 4th Street and Wurster Hall are different

  • Overall average Exceedance index (E-index), calculated by averaging hourly values for the entire pollution episode, for 4th Street was 0.82, suggesting that the building as a whole was resilient to outdoor air pollution during this episode, and that the tight building envelope paired with two-staged particle filtration of MERV 8 and MERV 13 at the air handler was effective at blocking PM2.5 penetration and providing acceptable indoor air quality (IAQ) conditions

Read more

Summary

Introduction

We have observed increased wildfire frequency and intensity in response to global warming [1]. Many regions prone to fire are forecasted to have increased frequency of wildfires and associated air pollution episodes [2].

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call