Abstract

We used insertional mutagenesis to produce genetically tagged mutants of the Dutch elm disease fungus Ophiostoma novo-ulmi subsp. novo-ulmi. We first optimized transformation of O. novo-ulmi protoplasts by the restriction enzyme mediated integration method. A concentration of 80 U of HindIII with 108 fungal protoplasts and 5 microg of plasmid DNA was the most efficient for generating a high number of O. novo-ulmi mutants carrying a single insertion in their genome. Mycelium- and yeast-like growth kinetics of 24 O. novo-ulmi mutants were evaluated in vitro. Flanking sequences were successfully recovered in 8% of the transformants analyzed. Some mutant phenotypes appeared to result from gene disruption events, whereas others likely involved modifications of noncoding regions. Several nuclear loci that control vegetative growth and could potentially impact parasitic fitness were successfully tagged.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.