Abstract

Increment of arsenic (As) in soil, a highly poisonous element, is a considerably important issue nowadays due to its danger of entry to the environmental cycles and food contamination. Bioaccumulation properties of many plants have been studied, although a very few reveal as a proper bioaccumulator plant for As. The Red clover, Trifolium pratense L. geographically widespread. The aim was conducted in order to determine the potential ability of this plant for cleaning up contaminated soil. Food grown on such lands usually contains heavy metals. Phytoremediation treatment of the soil prevents their entry into food, because it reduces the concentration of pollutants. Eighty-five Red clover one month old plants were grown in a nursery until transplant into the contaminated soil by inorganic As. Leaves and roots of 60 of plants sample were taken separately in every ten day during 60 days and analysed by ICP-OES while 25 samples were kept in different pH (8-4) in contaminated soil samples. Mean values of inorganic As(V) and As(III) in shoots and roots of plants were determined, and the statistical approaches were used for establishing the differences Bioaccumulation factor was calculated for As contents of plant parts for every 10 days. The soil arsenic level (19.09 mg/kg) higher than the global average (10.0 mg/kg), but within the maximum acceptable limit for agricultural soil (20.0 mg/kg) recommended by the European Union after 10 days. The lowest mean arsenic concentration was found after 40 days of cultivation of plant in pH=6 (1.01 mg/kg). It was observed that Red clover had suitable ability for phytoextraction method and soil recovery more Arsenic in pH<7 after 20-30 days of growth. The rate of As uptake by Red clover was significantly affected by the grown days after cultivated in contaminated treated (p<0.05) and pH of soil while up-taking in pH≤6 (p-value <0.05).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.