Abstract

Development of hyperpolarized technology utilizing dynamic nuclear polarization has enabled the measurement of 13C metabolism in vivo at very high signal-to-noise ratio (SNR). In vivo mitochondrial metabolism can, in principle, be monitored with pyruvate, which is catalyzed to acetyl-CoA via pyruvate dehydrogenase (PDH). The purpose of this work was to determine whether the compound sodium dichloroacetate (DCA) could aid the study of mitochondrial metabolism with hyperpolarized pyruvate. DCA stimulates PDH by inhibiting its inhibitor, pyruvate dehydrogenase kinase. In this work, hyperpolarized [1-13C]pyruvate and [2-13C]pyruvate were used to probe mitochondrial metabolism in normal rats. Increased conversion to bicarbonate (+181±69%, P=.025) was measured when [1-13C]pyruvate was injected after DCA administration, and increased glutamate (+74±23%, P=.004), acetoacetate (+504±281%, P=.009) and acetylcarnitine (+377±157%, P=.003) were detected when [2-13C]pyruvate was used.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call