Abstract

In this study, the feasibility of using hydrated cement paste (HCP) as a CO2 sponge was investigated. The grounded HCP were carbonated, calcined and re-carbonated to investigate the potential of CO2 transportation through the use of HCP. Facilitated by the microstructural analysis, the capacity of CO2 sequestration and release via HCP, as well as the carbonation phases formed within the carbonated/calcined/recarbonated cement paste, were investigated. The initial results indicate that HCP could sequestrate CO2 to become carbonated cement paste (HCPcarbonated) with a high CO2 capture ratio, where a number of carbonates formed. After the calcination of HCPcarbonated, the calcined carbonated cement paste (HCPcalcined) was produced and some new phases formed with a large release amount of CO2. In terms of the re-carbonation process, moisture within the HCPcalcined played an important role concerning its re-carbonation efficiency. Finally, by means ofHCP, this research innovatively proposed a new concept to effectively transport CO2, that is, a CO2 sponge, as well as a technology roadmap, to achieve this goal.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.