Abstract

Huntington disease (HD) is a devastating neurological disorder caused by an extended CAG repeat in exon 1 of the gene that encodes the huntingtin (HTT) protein. HD pathology involves a loss of striatal medium spiny neurons (MSNs) and progressive neurodegeneration affects the striatum and other brain regions. Because HTT is involved in multiple cellular processes, the molecular mechanisms of HD pathogenesis should be investigated on multiple levels. On the cellular level, in vitro stem cell models, such as induced pluripotent stem cells (iPSCs) derived from HD patients and HD embryonic stem cells (ESCs), have yielded progress. Approaches to differentiate functional MSNs from ESCs, iPSCs, and neural stem/progenitor cells (NSCs/NPCs) have been established, enabling MSN differentiation to be studied and disease phenotypes to be recapitulated. Isolation of target stem cells and precursor cells may also provide a resource for grafting. In animal models, transplantation of striatal precursors differentiated in vitro to the striatum has been reported to improve disease phenotype. Initial clinical trials examining intrastriatal transplantation of fetal neural tissue suggest a more favorable clinical course in a subset of HD patients, though shortcomings persist. Here, we review recent advances in the development of cellular HD models and approaches aimed at cell regeneration with human stem cells. We also describe how genome editing tools could be used to correct the HTT mutation in patient-specific stem cells. Finally, we discuss the potential and the remaining challenges of stem cell-based approaches in HD research and therapy development.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.