Abstract

We show that a heating pattern applied to a surface with a corrugation pattern generates a propulsive effect. The same heating pattern applied to a smooth surface creates propulsion through nonlinear thermal streaming associated with pitchfork bifurcation. The combination of groove and heating patterns generates thermal drift, representing a forced response whose magnitude changes with the relative position of both patterns. Thermal drift is always present, while thermal streaming requires sufficiently intense heating. When both effects are active, a change in the relative position of these patterns produces rapid changes in the magnitude of propulsion, resulting in the formation of limit points. The strength of propulsion increases with a decrease in the Prandtl number and with an addition of uniform heating.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call