Abstract

Abstract This study investigated the multi-response optimization of turning process for an optimal parametric combination to yield minimum cutting forces and surface roughness with maximum material removal rate (MRR) using the combination of Grey relational analysis (GRA) and Taguchi method. Nine experimental runs based on an orthogonal array of Taguchi method were performed to derive objective functions to be optimized within experimental domain. The objective functions have been selected in relation to parameters of cutting process: cutting force, surface roughness and MRR. The Taguchi approach followed by Grey relational analysis to solve the multi-response optimization problem. The significance of factors on overall quality characteristics of the cutting process has also been evaluated quantitatively by the analysis of variance method (ANOVA). Optimal results have been verified through additional experiments. This shows proper selection of the cutting parameters produces, high material removal rate with better surface roughness and lower cutting force.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.