Abstract

Offshore wind projects currently provide over two gigawatts of power to the global energy market (Global Wind Energy Council, 2010). Nearly all of this is generated in the North Sea dominated by projects in the United Kingdom and Denmark (Global Wind Energy Council, 2010). The development of offshore wind energy is moving forward in the United States (US) with the recently approved Cape Wind project in federal waters off Massachusetts, the continued planning for offshore wind projects in the Great Lakes and the granting of limited leases for study and calls for requests for interest in leasing selected portions of the eastern outer continental shelf (e.g., Minerals Management Service, 2009; Bureau of Ocean Energy Management, Regulation and Enforcement, 2010; Great Lakes Wind Council, 2010). In addition to the United Kingdom in Europe, large-scale offshore wind projects are projected for France, Belgium and the Netherlands, as well as, in China (Global Wind Energy Council, 2010). The development of offshore wind projects further contributes to the existing pressures on the marine environment increasing the potential benefits of comprehensive, integrated, ecosystem-based planning. This type of marine spatial planning (MSP) is based on sound science and considers current and anticipated uses of the ocean and coastal environment (Ehler and Douvere, 2009). Geospatial techniques provide the framework by which data can be manipulated to aid in implementation of MSP.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call