Abstract

Flower production and pollen dispersal patterns of diclofop-methyl-susceptible and -resistant Italian ryegrass were examined to determine whether evolution of herbicide resistance could be controlled by cross-fertilization between biotypes. The susceptible and resistant ryegrass biotypes differed in timing and abundance of both ovule production and pollen release such that pollen from the susceptible plants had a much greater chance of fertilizing the resistant plant population than vice versa. Susceptible ryegrass, growing with or without wheat competition, produced more than 60% of its seeds before any pollen from resistant plants was released. In contrast, throughout the course of resistant plant seed generation, pollen from susceptible plants composed at least 30% of the total pollen load. These phenological differences, in conjunction with herbicide treatment results for third-generation ryegrass seedlings, suggest that gene flow can be used to reduce development of diclofop-methyl resistance in ryegrass populations within wheat cropping systems. In a wheat field infested with resistant ryegrass, cessation of herbicide application and sowing of a susceptible ryegrass biotype can be expected to reduce the evolution of diclofop-methyl resistance by at least 6% per year.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.